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1 Introduction

Hodge Theory [13] studies the relationships of topology, functional analysis and
geometry of a manifold. It extends the theory of the Laplacian on domains of
Euclidean space or on a manifold.

However, there are a number of spaces, not manifolds, which could benefit from
an extension of Hodge, and that is the motivation here. In particular we believe
that a deeper analysis in the theory of vision could be led by developments of Hodge
type. Spaces of images are important for developing a mathematics of vision (see
e.g. Smale, Rosasco, Bouvrie, Caponnetto, and Poggio [20]; but these spaces are
far from possessing manifold structures. Other settings include spaces occurring in
quantum field theory, manifolds with singularities and/or non-uniform measures.

A number of previous papers have given us inspiration and guidance. For ex-
ample there are those in combinatorial Hodge theory of Eckman [8], Dodziuk [7],
Friedman [11], and more recently as Lin and Yao [16]. Recent decades have seen
extensions of the Laplacian from its classical setting to that of combinatorial graph
theory. See e.g. Fan Chung [5]. Robin Forman [10] has useful extensions from
manifolds. Further extensions and relationships to the classical settings are Belkin,
Niyogi [2], Belkin, De Vito, and Rosasco et al [1], Coifman, Maggioni [6], and Smale,
Zhou [19].

Our approach starts with a metric space (complete, separable) X, endowed with
a probability measure. For £ > 0, an /-form is a function on ¢ + 1 tuples of points
in X.The coboundary operator ¢ is defined from ¢-forms to ¢ + 1-forms in the
classical way following Cech, Alexander, and Spanier. Using the L? adjoint 6* of
0 for a boundary operator, the /th order Hodge operator on {-forms is defined by
Ay = 6*5+86*. The £-harmonic forms on X are solutions of the equation Ay(f) = 0.
The /-harmonic forms reflect the fth homology of X but have geometric features.
The harmonic form is a special representative of the homology class and it may be
interpreted as one satisfying an optimality condition. Moreover, the Hodge equation
is linear and by choosing a finite sample from X one can obtain an approximation
of this representative by a finite linear equation.

There are two avenues to develop this Hodge theory. The first is a kernel ver-
sion corresponding to a Gaussian or a reproducing kernel Hilbert space. Here the
topology is trivial but the analysis gives a substantial picture. The second version
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is akin to the adjacency matrix of graph theory and corresponds to a threshold at
a given scale alpha.

For the L? theory, complete Hodge decomposition results are given in both cases.
For the continuous theory, the Hodge decomposition for the kernel case is obtained.
Yet for the adjacency setting the general continuous theory awaits resolution.

POISSON REGULARITY PROBLEM: If Ay(f) = g is continuous under what
conditions is f continuous?

It is proved that a positive solution of the Poisson Regularity Problem implies
a complete Hodge decomposition for continuous ¢-forms in the ”adjacency matrix”
setting (any scale alpha). The problem is also solved affirmatively for some special
cases as £ = 0, or X is finite. A special case is

PROBLEM: Under what conditions are harmonic ¢ forms continuous?

Here we have a solution for £ =0 and ¢ = 1.

In fact when X is finite this picture coincides with that of the combinatorial
Hodge theory referred to above. The solution of these regularity problems would
be progress toward the important cohomology identification problem: To what
extent does the L? cohomology coincide with the classical cohomology?

Certain previous studies show how the topology questions can give insight into
the study of images. Lee, Pedersen, and Mumford [15] have investigated 3 x 3
pixel images from real world data bases to find the evidence for the occurrence
of 1 dimensional homology classes. Moreover, Carlsson, Ishkhanov, de Silva, and
Zomorodian [3] have found evidence homology of surfaces in the same data base.
Here we are making an attempt to give some foundations to these studies. More-
over, this general Hodge theory could yield optimal representatives of the homology
classes and provide systematic algorithms.

Some conversations with Shmuel Weinberger were helpful. An early brief an-
nouncement of this work is Smale and Smale [18].

2 An L? Hodge Theory

In this section we construct a general Hodge Theory for certain L? spaces. The
amount of structure needed for this theory is minimal. First, let us define some
notation used throughout the section. For us, X will denote a set endowed with
a probability measure p (u(X) = 1). The ¢-fold cartesian product of X will be
denoted as X* and i will denote the induced product measure on X*. Furthermore,
we will assume the existence of a kernel function K : X2 — R a non-negative,
measurable, symmetric function which we will assume is in L (X x X), and for
certain results, we will impose additional assumptions on K. A useful example to

keep in mind is this. X is a compact domain in Euclidean space, u a Borel, but
(B
not necessarily Euclidean measure, and K a Gaussian kernel K(z,y) = e~ = ,

o > 0. A simpler example is K = 1, but the Gaussian example contains the notion
of locality (K (z,y) is close to 1 when z is near y).

Recall that a chain complex of vector spaces is a sequence of vector spaces V;
and linear maps d; : V; — V;_ such that the composition d;_; od; = 0. A co-chain
complex is the same, except that d; : V; — Vj 1. The basic spaces in this section
are L?(X*), from which we will construct chain and co-chain complexes:

Op—1 o
e

(2.1) o dm 2 xery  p2(xt LX) 20
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and

) dp—1 LQ(XZJrl)i

(2.2) 0 — L2(X) 2% r2(x?) 2
Here, both 9, and §; will be bounded linear maps, satisfying dy_1 o 9y = 0 and
d¢ody_1 = 0. When there is no confusion, we will omit the subscripts of these

operators.
We first define 6 = 6,1 : L?(X*) — L?(X**1) by

(2.3) 0f(xoy...,xp) Z H (i, ) f(Toy vy Tiy o oo, Tp)

J#i

where Z; means that x; is deleted. This is similar to the co-boundary operator of
Alexander-Spanier Cohomology (see Spanier [21]). The square root in the formula
is unimportant for most of the sequel, and is there so that when we define the
Laplacian on L?(X), we recover the operator defined in Gilboa and Osher [12]. We
also note that in the case X is a finite set, dg is essentially the same as the gradient
operator developed by Zhou and Scholkopf [24] in the context of learning theory.

Proposition 1. For all £ >0, § : L?(X*) — L?(X**1) is a bounded linear map.

Proof. Clearly §f is measurable, as K is measurable. Since || K || < 00, it follows
from the Schwartz inequality in R’ that

=0

) 2
6f(x0,...,z0)2 < C <Z|f(x07...,£,-,...,x4)|>

14

g0(44—1)2\f(xo,...7ii7...,xg)|2

=0

where C' = ||K||%,. Now, integrating both sides of the inequality with respect to
dp*t | using Fubini’s Theorem on the right side and the fact that u(X) = 1 gives
us

16 f L2 (xevny < VO(t+ DI fllz2xe)
completing the proof.
Proposition 2. For all £>1, §p0,_1 = 0.
Proof. For f € L*(X*) we have

6¢(0e—1f) (20, -, Tet1)

Z—i—l
H \/ xwx] 6@ lf -'1707-“, J]@+1)
J#i
/+1
Hq/ (i, x; Z H VE(xg, xn) [ (X0, oo Thy o e oy Ty ey Tpg1)
= Ve n#k,i
Z+1 l+1
/ 1 A o
H xzaxj Z k H \/K(xkaxn)f($07"'7$i7"'7$k7"'7x5+1)
= YE] k=i+1 n#k,t
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Now we note that on the right side of the second equality for given i, k, k < 4, the
corresponding term in the first sum

(—1)i+kH\/K(sci,scj) H VE (@, n) [ (@0 oy Tk oy iy ooy To1)

Jj#i n#£k,i
cancels the term in the second sum where 7 and k are reversed

(—l)kH_lH\/K(mbxj) H VE (@, xn)f(@oe ooy Thy ooy iy e oy Tog1)

Ak n#k,i

because, as it is easily checked, using the symmetry of K that

I VE@,2) [ VE@e ) =[] VE @) [ VE@k )

i nk,i Ak nk,i

It follows that (2.2) and (2.3) define a co-chain complex. We now define, for
>0, 0;: L2 X — L3(X*) by

L

-1
(2.4) Dug(x) = Z(_w‘/ T VE® ) | 9o, w1tz - 2o ) du(t)
i=0 X \j=0

where z = (g, ...,z4_1) and for £ = 0 we define 9y : L*(X) — 0.

Proposition 3. For all £ >0, 0, : L>(X**t!) — L?(X?") is a bounded linear map.
Proof. For g € L?(X**1), we have

¢
10eg(x0, - - ., 20-1)] < ||K||€O_IZ/ l9(x0s -y Tim1,ty .o 1| dpu(t)
i=0 /X

1

4 2
< ||K||f>o_1 Z (/}( |g(.’1,'07 (R wriflat» ey x€71)|2 d:u(t))
=0

1
2

4
< |K|SWiF1 (Z/X g(xo,...,xi1,t,...,m51)|2du(t)>
=0

where we have used the Schwartz inequalities for L?(X) and R*! in the second
and third inequalities respectively. Now, square both sides of the inequality, and
integrate over X! with respect to puf and use Fubini’'s Theorem arriving at the
following bound to finish the proof

10egll L2 (xey < KNG (€ + D)llgl 2 (xess)

We now show that 90y is actually the adjoint of §,—; (which gives a second proof
of Proposition 3).
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Proposition 4. 6; | = 0p. That is < d¢-1f,9 >r2(xe+1y=< f, 009 >12(x¢) for all
f e LX) and g € LA2(X*H).

Proof. For f € L?(X*) and g € L?(X**!) we have, by Fubini’s Theorem

¢
<di_1f,g >:Z /HIH (@i, ;) f( .’Eo,...,i‘i,...,wg)g(l‘o,...,J,‘g)d/,&e+1
i=0 Xy

/4

Z f an"'v A’L‘v / H \/ xl7xj :L'Oa"'v d/i(l’z) dﬂ(.’ﬂo)

J#i

In the i-th term on the right, relabeling the variables xzg,...,Z;,...x; with
Yy = (Yo,...,Yye—1) (that is y; = ;41 for j > 4) and putting the sum inside the
integral gives us

L £—1
J e [ TR Gonslton v o) o) )

i=

which is just < f, 0eg >.

We note, as a corollary, that d¢_1 0 9y = 0, and thus (2.1) and (2.4) define
a chain complex. We can thus define the homology and cohomology spaces (real
coefficients) of (2.1) and (2.2) as follows. Since Im9, C Kerdy_; and Imd,_; C Kerd,
we define the quotient spaces

Kero,
Im@g_l

Keré,

(2.5) HE(X) = HZ(Xv K, :u) = Imdy_4

H'(X) = B(X, K, p) =

which will be referred to the /-dimensional homology and cohomology respectively.
In later sections, with additional assumptions on X and K, we will investigate the
relation between these spaces and the topology of X for example, the Alexander-
Spanier cohomology. In order to proceed with the Hodge Theory, we consider § to
be the analogue of the exterior derivative d on ¢ forms from differential topology,
and 0 = ¢ as the analogue of d*. We then define the Laplacian (in analogy with the
Hodge Laplacian) to be Ay = 870 + 8p—16;_,. Clearly A, : L2( X)) — L2(X 1)
is a bounded, self adjoint, positive semi-definite operator since for f € L?(X**+1)

(2.6) SAf f>=<86f, f >+ <887 f, f >=||6f|* + |07 f|?

where we have left of the subscripts on the operators. The Hodge Theorem will
give a decomposition of L2(X**1) in terms of the image spaces under §, §* and the
kernel of A, and also identify the kernel of A with H*(X, K, ). Elements of the
kernel of A will be referred to as harmonic. For £ = 0, one easily computes that

§80f(@) = D) (@) = [ K(@)fw)duty) where Dle) = [ Ko.)duty

which, in the case K is a positive definite kernel on X is the Laplacian defined in
Smale and Zhou [19] (see section 5)
5
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Remark. It follows from (2.6) that Af = 0 if and only if §,f = 0 and 6; f = 0,
and so KerA, C Kerd,.
The main goal of this section is the following L? Hodge theorem:

Theorem 1. Assume that 0 < 0 < K(x,y) < ||K|leoc < o0 almost everywhere.
Then we have the orthogonal, direct sum decomposition

LX) = Iméy_1 @ Imé; @ Kerl,
and the cohomology space H* (X, K, 1) is isomorphic to Kerl,, with each equiva-
lence class in the former having a unique representative in the latter.

In this case HY(X) =0 for £ > 0 and H°(z) = R. Indeed, the theorem holds as
long as d§; (or equivalently) d;) has closed range for all £.

In subsequent sections we will have occasion to use the L? spaces of alternating
functions:

LE(XZ+1) :{f € LQ(XZ+1) : f(an s 750[) = (71)Signgf(‘ra(xo)7 cee 7:170(1'@))7
o a permutation}

Due to the symmetry of K, it is easy to check that preserves the alternating prop-
erty, and thus propositions 1 through 4, as well as formulas (2.1), (2.2), (2.5) and
(2.6) hold with L2 in place of L. We note that the alternating map

Alt - L2(Xh) — L2(x*Y

defined by

Alt(f)(xo,...,xg)z (é—l—l)' Z (_1)Sign0f(zg(wo)""7x0(w2)

o€Sp1

is a projection relating the two definitions of /-forms.
We first collect some relevant facts in a more abstract setting in the following

Lemma 1 (Hodge Lemma). Suppose we have the cochain and corresponding
dual chain complezes

) ) Sp—1 )
0—>V0—0>V1—1>"'—>Vg—e>"'

5 01 67 o 5
—Z>W—>w_1—>—0>‘/0—>0

where for ¢ = 0,1,..., Vg, <,>, is a Hilbert space, 0; (and thus &}, the adjoint
of 6;) is a bounded linear map with 6* = 0. Let Ay = §;8¢ + 6,—10;_,. Then the
following are equivalent

1. 8¢ has closed range for all ¢
2. 6} has closed range for all ¢

Furthermore, if one of the above conditions hold, we have the orthogonal, direct
sum decomposition into closed subspaces

Ve = Imdyp—1 ® Imd; @ Kerl,
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. Kel‘(Sg
and the quotient space Tmos 5

in the former having a unique representative in the latter.

is isomorphic to KerA,, with each equivalence class

Proof. We first assume conditions 1 and 2 above and prove the decomposition. For
all feV,_q1 and g € Vpy1 we have

<Og—1f, 679 >e=<8¢0¢—1f, 9 >e41=0.

Also, as in (2.6), Ayf = 0 if and only if d;f = 0 and 0;_,f = 0. Therefore, if
f € KerAy, then for all g € Vp_1 and h € Vp4q

< f 0019 >0=<0;_1f,9>e1=0 and < f,0;h >=<0,f,h >¢1=0

and thus Imd,—1, Imé; and KerA, are mutually orthogonal. Now, since Imd,—; @

Imé; is closed, to prove the decomposition it suffices to show that KerA, D

(Imé&y—1 ®Imé;) L. Let v € (Imé,—1 ®Imé})L. Then, for all w € Vp, < §pv,w >=<

v,0;w >= 0 and < §;_;v,w >=< v,d,—1w >= 0, which implies that J,v = 0 and

d;_,v = 0 and as noted above this implies that A,v = 0, proving the decomposition.
We define an isomorphism

B Kerdy
Im5z,1

— KerA,

as follows. Let P : Vp — KerA, be the orthogonal projection. Then, for an
equivalence class [f] € e define P([f]) = P(f). Note that if [f] = [g] then
f =g+h with h € Imd,_1, and therefore P(f)—P(g) = P(h) = 0 by the orthogonal
decomposition, and so P is well defined, and linear as P is linear. If I:’( [f) =0
then P(f) =0 and so f € Imd,_; & Imd;. But f € Kerdy, and so, for all g € Viqq
we have < §;¢g,f >=< g,0, >= 0, and thus f € Imd,—; and therefore [f] = 0
and P is injective. On the other hand, Pis surjective because, if w € KerAy, then
w € Kerdy and so P([w]) = P(w) = w.

Finally, the equivalence of conditions 1 and 2, is a general fact about Hilbert
spaces. If 6 : V' — H is a bounded linear map between Hilbert spaces, and §* is it’s
adjoint, and if Imé is closed in H, then Imd* is closed in V. We include the proof
for completeness. Since ImJd is closed, the bijective map

§: (Kers)t — Imé
is an isomorphism by the open mapping theorem. It follows that
nf{[[5(v)] : v € (Kerd), [Jof = 1} >0
Since Im§ C (Kerd*)1, it suffices to show that
6%6 : (Kerd)t — (Kers)*

is an isomorphism, for then Imé* = (Kerd)* which is closed. However, this is
established by noting that < §*6v, v >= ||6v||? and the above inequality imply that

inf{< 6*6v,v >: v € (Kerd)*, |lv|| =1} > 0.



Corollary. For all £ > 0 the following are isomorphisms

0¢ : Imd; — Imd, and 6} : Imdy — Imd,

Proof. The first map in injective because if §(0f) = 0 then 0 =< 30f, f >= || f||?
and so 0f = 0. It is surjective because of the decomposition (leaving out the
subscripts)

0(V) = 6(Imé & Imd™* & KerA) = §(Imd*)

since d is zero on the first and third summands of the left side of the second equality.
The argument for the second map is the same.

The difficulty in applying the Hodge Lemma is in verifying that either § or 6*
has closed range. We first do this in the special case where K(x,y) =1 for all z,y
in X. Let 3? be the corresponding operator in (2.4). We have

Lemma 2. For (> 1, Imd? = Kerd?_,, and Imd? = {1} the orthogonal comple-
ment of the constants in L?(X).

Of course this implies that Imdy is closed for all £ since null spaces and orthogonal
complements are closed, and in fact shows that the homology (2.5) in this case is
trivial for £ > 0 and one dimensional for £ = 0.

Proof of Lemma 2. Let h € {1}+ C L*(X). Define g € L*(X?) by g(z,y) = h(y).
Then from (2.4)

Ofg(an) = [ (alt.a0) = oo 0) dut) = [ (h(a0) = hit)) di(t) = hao)
since u(X) = and [y hdp = 0. It can be easily checked that 0f maps L*(X?)
into {1}+, thus proving the lemma for £ = 1. For £ > 1 let h € Kerd)_,. Define
g € L2 X)) by g(zo,...,7¢) = (=1)’h(xg,...,2¢_1). Then, by (2.4)

14

8g(xo, ... we1) = Z(*l)l/ 9(@os -, Tim1, b, Ty o, To—1) d(t)

i=0 X
-1 ]
= (O SV [ At a) i)
i=0 X

(71)2411(.%0, . ,$g_1)
(—1)68?71h<.’170, Ceey l‘g,z) + h(ajo, C ,1}@,1)
h

(CL'(), e ,"E[,l)

+

since 8?_1h = 0, finishing the proof.

The next lemma give some general conditions on K that guarantee 0y has closed
range.

Lemma 3. Assume that K(x,y) > o > 0 for all z,y € X. Then Imd, is closed
for all £. In fact, Imdy = Kerdy_y for £ > 1 and has co-dimension one in L*(X)
for£=1.
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Proof. Let My : L?>(X*) — L?(X*) be the multiplication operator

Mo(f)(zo,- . x0) = [ [ VK (@5, 2x) (o, - . 0)
J#k
. Since K € L>°(X?) and is bounded below by o, M, clearly defines an isomorphism.
The Lemma then follows from Lemma 2, and the observation that

Oy = Méill 08? o M,

The L? Hodge theorem (Theoreml) now follows from the Hodge Lemma, and
Lemma 3.

We also note that Lemma 2, Lemma 3 and Theorem 1 hold in case the alternating
setting, when L?(X*) is replaced with L2(X?).

For background, one could see Munkres [16] for the algebraic topology, Lang [14]
for the analysis, and Warner [22] for the geometry.

3 Metric Spaces

For the rest of the paper, we assume that X is a complete, separable metric
space, and p is a Borel probability measure on X, and K is a continuous function
on X? (as well as symetric, nonnegative and bounded as in section 2). We will also
assume throughout the rest of the paper that p(U) > 0 for U any nonempty open
set.

The goal of this section is a Hodge Decomposition for continuous alternating
functions. Let C(X*!) denote the continuous functions on X**!. We will use the
following notation:

C€+1 _ C(Xerl) N Li(XZ+1) n Loo(XZJrl)
Note that
§: 0 02 and 90t = COf

are well defined linear maps. The only thing to check is that §(f) and 9(f) are
continuous and bounded if f € C**1. In the case of §(f) this is obvious from (2.3).
The following proposition from analysis, (2.4) and the fact that p is Borel imply
that (f) is bounded and continuous.

Proposition. LetY and X be metric spaces, p a Borel measure on X, and M, g €
CY x X)NL®(Y x X). Then dg € C(X)NL>®(X), where

dg(x) = /X M(z, t)g(z, £) du()

Proof. The fact that dg is bounded follows easily from the definition and properties
of M and g, and continuity follows from a simple application of the Dominated
Convergence Theorem.

Therefore we have the chain complexes:

(3.1) RGNS 8 /N S N LN
and
(3.2) 00—t 0o, o2 8, O s Oe

In this setting we will prove



Theorem 2. Assume that K satisfies the hypotheses of Theorem 1, and is contin-
uous. Then we have the orthogonal, direct sum decomposition

CH = 5(C% @ 9(C?) @ Kerc A

where Kerc/A denotes the subspace of elements in Ker/ that are in C*+1.

As in Theorem 1, the third summand is trivial except when ¢ = 0 in which case
it consists of the constant functions. We first assume that K = 1. The proof follows
from a few propositions. In the remainder of the section, Imd and Imod will refer
to the image spaces of § and 9 as operators on L2. The next proposition gives
formulas for @ and A on alternating functions.

Proposition 5. For f € L2(X*"1) we have

Of(zg, ..., xp—1) = (€+1)/Xf(t,x0,...,xg_1)du(t)

and

4
Af(z0,... 20) = (E+2)f(x0,...,:cg)fH%Z@f(xo,...,i'i,...,w)

=0

Proof. The first formula follows immediately from (2.4) and the fact that f is
alternating. The second follows from a simple calculation using (2.3), (2.4) and the
fact that f is alternating.

Let Py, P5, and P3 be the orthogonal projections implicit in Theorem 1
P L2(XY) —Imé Py L2(X*H) = Imd  P3: L2(X*) — KerA

Proposition 6. Let f € C*t1. Then Py(f) € C**!

Proof. Tt suffices to show that P;(f) is continuous and bounded. Let g = Py (f). It
follows from Theorem 1 that df = 0g, and therefore dg is continuous and bounded.
Since dg = 0, we have, for t,xg,..., 2, € X

l
0=30g(t,x0,...,20) = g(wo, ..., xe) = > _(—=1)'g(t, 20, ., &i - .., 1)
i=0

<

Integrating over t € X gives us
g(zoﬁ"'7xe) = / g(x(]?"'?IZ) d#(t) = Z(il)l\/ g(t71:07"'7:i:i7"'7:17€) d/'[/(t)
X ;

14
1 ) .
¥l 2(71)289(%7 R TR 7))
1=0

As Qg is continuous and bounded, this implies g is continuous and bounded.
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Corollary. If f € C**Y, then Py(f) € CT1.

This follows from the Hodge decomposition (Theorem 1) and the fact that Ps(f)
is continuous and bounded (being a constant).

The following proposition can be thought of as analogous to a regularity result in
elliptic PDE’s. It states that solutions to Au = f, f continuous, which are apriori
in L? are actually continuous.

Proposition 7. If f € O and Au = f, u € L2(X**) then u € C*FL.

Proof. From Proposition 5, (with u in place of f) we have

‘
1 .
Au(zg,...,x0) = (€+2)U(I’0,...,$4)*7£ 1 g ou(xo, ... &iy. .., xp)

=0

:f(l'()?"'axf)

and solving for u, we get

1 ¢ A
mzau(%"“’xiwwm

=0

w(zo, ..., %) = mf(x07...7xz)+

It therefore suffices to show that du is continuous and bounded. However, it is easy
to check that A o9 = 0o A and thus

A(Ou) = 0Au=0f
is continuous and bounded. But then, again using Proposition 5
A(Ou) (2o, -, xe—1) = (£ + 1)Ou(zo, . .., Te-1)

-1

(—1)i8(8u)(3c0, N ,.f?i, ce ,J,‘g,l)

i

1
0

3

I
o

and so, using 9% = 0 we get
L+ 1)0u=0f

which implies that Ju is continuous and bounded, finishing the proof.
Proposition 8. If g € C*t1 N Imé, then g = 6h for some h € C*.

Proof. From the corollary of the Hodge Lemma, let h be the unique element in Imd
with g = 0h. Now Jg is continuous and bounded, and

0g = 06h = O0h + 60h = Ah

since dh = 0. But now h is continuous and bounded from Proposition 7.
Proposition 9. If g € Ot N L2(X%H), the g = Oh for some h € C*+2,

The proof is identical to the one for Proposition 8.
Theorem 2, in the case K = 1 now follows from Propositions 6 through 9. The

proof easily extends to general K.
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4 Hodge Theory at Scale «

As seen in sections 2 and 3, the chain and cochain complexes constructed on the
whole space yield trivial cohomology groups. In order to have a theory that gives us
topological information about X, we define our complexes on a neighborhood of the
diagonal, and restrict the boundary and coboundary operator to these complexes.
The corresponding cohomology can be considered a scaled cohomology of X, with
the scale being the size of the neighborhood. We will assume throughout this section
that (X,d) is a compact metric space. For z,y € X*, £ > 1, this induces a metric
compatible with the product topology

de(x,y) = max{d(zo,yo),...d(@xi—1,y0-1)}

The diagonal D, of X is just {zx € X* : 2, =, i,j =0,..., — 1} For a > 0
we define the « neighborhood of the diagonal to be

Ul ={z e X" dy(x,Dy) < a}
= {x € X*:3t € X such that d(z;,t) <a, i=0,...,0—1}

Observe that Uf; is closed and that for o > diameter X, Uﬁ = X¢

Of course, the measure i, induces a Borel measure on UY which we will simply
denote by py. For simplicity, we will take K = 1 throughout this section, and
consider only alternating functions in our complexes. We first discuss the L? theory,
and thus our basic spaces will be L2(UY), the space of alternating functions on U/
that are in L? with respect to g, £ > 0. Note that if (zo,...,z¢) € UL, then
(w0, ... &gy nyxg) € UL for i = 0,...,0. It follows that if f € L2(UY), then
§f € L2(ULHY). We therefore have the well defined cochain complex

0— 22U S 22 % S 2wl S 2ol

Since 0 = 0* depends on the integral, the expression for it will be different than
(2.4). We define a ”slice” by

SIOA..MFI = {t e X: (CL’(), - ,xzfl,t) € Ué+1}

We note that, for S,,....,_, to be nonempty, (zg,...,7¢_1) must be in U, and
furthermore
41 _ ) ¢
U, ={(zo,...,xe) : (zo,...,xe—1) € Uy, and ¢ € Sgyeozy_y |

It follows from the proof of Proposition 1(section 2) and the fact that K = 1, that
§: L2(UL) — L2(ULHY) is bounded and that ||§]| < £+ 1, and therefore it’s adjoint
is bounded. The adjoint of the operator ¢ : L2(U%) — L2(ULH!) will be denoted,
as before, by either 9 or §* (without the subscript ¢).

Proposition 10. For f € L2(UY) we have

Of (xg, ..., xe—1) =l +1) / ft,zo, ..., @e—1) du(t)

Sag-wg_y
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Proof. The proof is essentially the same as the proof of Proposition 4, using the
fact that K =1, f is alternating, and the above remark.

It is worth noting that the domain of integration depends on z € U!, and this
makes the subsequent analysis more difficult than in section 3. We thus have the
corresponding chain complex

LU B LU B L(U) 20
Of course, Ul = X. The corresponding Hodge Laplacian in this setting is A :
L3(UY) — L2(UY) is A = 36 + 60, where of course all of these operators depend
on ¢ and @. When we want to emphasize this dependence, we will list £ and (or) «
as subscripts. We will use the following notation for the cohomology and harmonic

functions of the above complexes:

Ker d; o
H (X)) = 2 %a  and Harm?,(X) = Ker Ay,
’ Im 5@—1,& '
Remark. If o > diam X, then U{ = X*, so the situation is as in Theorem 1 of
section 2, so HY, (X) =0 for £ > 0 and H?, (X) = R. Also, if X is a finite
union of connected components Xy, ..., Xy, and o < dist(X;, X;) for all § # j, then
Hi, o(X) = &1 Hps o (X).
The following scaled L? Hodge Theorem is the main result of this section.

Theorem 3. If X is a compact metric space and £ > 0, o > 0, then we have the
orthogonal direct sum decomposition into closed subspaces

LA(UY) = Im 6o, @ Im §; ® Harm!,(X)

Furthermore, H'(L?) is isomorphic to Harm’(X), with each equivalence class in
the former having a unique representative in the latter.

Proof. By the Hodge Lemma (Lemma 1) it suffices to show that 6 : L2(Uf) —
L2(UL1) has closed image for each ¢. The main step in proving this, is showing
that § has closed range when the spaces consist of a finite union of cubes. Note that
by the definition of the metric dy, the closed ball of radius r centered at a point
(p,...,p) in the diagonal of X* is the same as the ¢-fold product of the closed ball
of radius r centered at p in X. That is B,(p,...,p) = B5(p). Let o/ > a. Then, by
compactness of Ut we can find finitely many py, ..., p, in X such that

Uttt ¢ Bﬁj‘l(pl) U---u Bﬁ;fl(pn) =Wy
It follows that
Ut, € BS (p1)U---UBY (pn) = Vi
since if (2, ..., xs_1) € UL, then there exists t € X such that d(z;,t) < a foralli =
0,...,£—1. But this implies that (zo,...,z¢_1,t) € U, and so (zg, ..., 7o 1,1) €
Bf;fl(pj) for some j, and therefore (zo,...,2,-1) € B% (p;). We know from the
”whole space theory” ( theorem 2, section 2) that

§: L3(Bh (pj) — La(B (p))
is well defined, and has closed image for each j, where, the measures on Bf;, and
Bﬁjl are just the induced measures from X* and X**! respectively. It follows,
that if we also equip V,» € X% and W, € X+ with the measures induced by the
corresponding product measures, then ¢ : L2(V,/) — L2(W,) is well defined. The

main technical proposition in the proof is the following.
13



Proposition 11. The subspace 6(L2(Vy)) is closed in L2(We).

Proof. For j = 0,...,n, let R; : L2(Vy) — L2(B% (p;)) and S; : L2(Wy) —
L2(B% (p;)) denote restriction. Then, it is easy to see that the following diagram
commutes:

L2(Va) —2—  L2(Wa)

(4.1) le ls,v
LBl (py) —"— L2(B (p)))
Consider the bounded linear map
St L2(War) = LE(BL (p1) x -+ x L2(BL (pa)

where Sf = (S1f,...,Snf) and the space on the right has the norm [|(g1,...g,)|| =
llgill + -+ + |lgn]| (or any norm inducing the product topology). From the remark
above

0(La(Bas(pr))) x -+ x 8(La(Bgs (pn)))

is closed in L2(B% (p1)) x -+ x L2(B% ™ (pn)), being the product of closed sub-
spaces. Consider the diagram

L2(Vor) & L2 (War) 2 L2(BY (1)) x - x LE(BS (pa))

By continuity of S and the remark above, the proposition will follow if we can show
that

(4.2) 3(La(Var)) = S™HO(LE(Ba (p1))) X -+ % 8(Le(Bgs (pn)))

that is d(L2(V,/)) is the inverse image by S of a closed set. If f € L2(V,),
then, by commutivity of the diagram (4.1) for all j = 1,...,n it follows that
S(57) € S(L2(BL () x- - X 6(L2(BLy(p,)). That is S(5) = (S151, .., Sudf) =
(0R1f,...,0R,f) and we have

3(La(Var)) € STHO(LE(Ba (1)) x -+ - x 6(Le(Bas (pn))))

To show the other inclusion, let b € S™Y(5(L2(B% (p1))) x - - x §(L2(B%. (pn))))-
Thus h € L2(W,/) and Sh = (3 f1,...,6fn) for some f; € L2(B%,(p;)). We need to
show that h = dq for some q € L2(V,). We define ¢ inductively as follows

q=f1 on Bfw(Pl)
q=f; on B.L(p;)/(BL(p1)U---UBL(pj-1)) j=2,....n

Thus g is well defined on V,,» and is clearly in L2(V,) since u is Borel regular. It
suffices to check that d¢ = h, but this follows easily from (4.1) and the fact that
0fi=0f;j =hon Bﬁj‘l(pi) N Bg‘,"l(pj). This proves the desired inclusion, and thus
finishes the proof of the proposition.

14



We resume the proof of Theorem 3. If V C X* is a closed set with the induced
measure from pf, we can view L2(V) as a closed subspace of L2(X*). That is, we
can identify L2(V) with {f € L2(X%) : f(z) = 0 a.e. * € X/V} = xv(L3(X?Y))
where xy is the characteristic function of V. In view of this, we have

ma’>aLi(Va’) = Li(Ué) and Ng/>a Li(Wa/) = Li(U(iJrl)

since NyrsaVor = UaZ and NgrsoaWo = Uf;“. Now, from the above remark and
Proposition 11, 6(L2(V,,)) is closed in L2(W,,) and thus closed in L2(X**1), and
therefore Nyr>ad(L2(V,)) is closed in L2(X**1). On the other hand §(L2(V.,)) C
L?(W,), and so

ﬂa’>a6(L3(Va')) C ma’>aLi(Wa’) = L5<Ué+l)

Since L2(UH! is closed in L2(X**!) it follows that Nassa8(L2(V,)) is closed in
L2(ULHY). To finish the proof of the theorem, it suffices to identify 6(L2(U%)) =
§(Nar>aL2(Vyr)) with Narsad(L2(Var)), for this would establish that § has closed
image, and as remarked earlier, this would prove the theorem. Obviously
§(Narsal?2(Var)) C Narsad(LE(Vy)). On the other hand, suppose that
J € Nar>ad(L2(Vy)). Consider the diagram

L2(Va) —2— L2(Wa)

RQIJ, lSa/

L2(UL) —2— L2(ULt)

where the vertical maps denote restriction. This diagram clearly commutes for all
o'. Now, f = §(g), for some g € L?(Vj) for 8 > a (of course g may depend on f3).
Thus 6(Rgg) = Sp(dg) = Saf. Note however, that Sgf = Sy f for all 8, > «
(this is just f restricted to U5*1), so f can be identified with Sgf for any fixed 3.
But then f = §(Rpg) and Rgg € L2(U%). Thus Nu>ad(L2(Va)) C 6(L2(UY)).

We record the formulas for §0f and 96 f for f € L2(ULH)

(4.3) 6(0f)(xo,-..,x0)

e .
n 1)2(—1)1/ Ft o, B 20)dp(t)

=0 Sag,bygenzg

(4.4) O(6f)(xo,...,xe) = (U +2)u(Suq,....x0) f(T0s- - -, x0)
¢

FEEDY T [ e e mdul?)

=0 Szg,. Ty
Of course, the formula for Af is found by adding these two.
Remark. Harmonic forms are solutions of the optimization problem: Minimize the
"Dirichlet form” ||0f||2+[|0f||? =< Af, f >=< AY2f AYV2f > over f € L2(ULH).

Remark. There is a second notion of U.*! called the RIPS complex (see Chazal
and Oudot [4]) defined by (zo,...,x,) € USFL(RIPS) if and only if d(z;,z;) < a
for all 7, j. We have not studied a version of Theorem 3 in this case.
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5 L? Theory of a-Harmonic 0-Forms

Assume X is compact and that the following spaces of functions on X2 = X x X
or U2 are alternating. Let o > 0 be fixed in this section and consider harmonic
functions relative to a. This amounts to making explicit Theorem 3 for £ = 0.

Recall that f € L?(X) is a-harmonic if A,f = 0. Moreover if § : L?(X) —
L?(U2) denotes the coboundary, then A,f = 0 if and only if §f = 0; also
§f(zo,21) = f(z1) — f(z0) for all pairs (xg, 1) € UZ.

Recall that for any € X, the slice Sy o =S, C X2 is the set

Sy = Sz.a ={t € X :dp € Xsuch that z,t € B,(p)}

Note that B, (z) C Sza C Baa(x). It follows that x1 € S, o if and only if
2o € Sz,,a. We conclude

Proposition. Let f € L?(X). Then Anf = 0 if and only if is locally constant in
the sense that f is constant on Sy o for every x € X. Moreover if Ay f =0, then

(a) If X is connected, then f is constant.

(b) If v is greater than the mazimum distance between components of X, then f
s constant.

(c) For any x € X, f(x) =average of f on Sy o and on Bu(x).

(d) Harmonic functions are continuous.

We note that continuity of f follows from the fact that f is constant on each
slice Sz, and thus locally constant.

Remark. We will show that (d) is also true for harmonic 1-forms with an addi-
tional assumption on p, but are unable to prove it for harmonic 2-forms.

Consider next an extension of (d) to the Poisson regularity problem. If A, f =g
is continuous, is f continuous? In general the answer is no, and we will give an
example.

Since Jp on L?(X) is zero, the L? a-Hodge theory (Sec. 4) takes the form

L*(X) = Im 0 @ Harm,,

where 0 : L2(U2) — L?(X) and Af = d5f. Thus for f € L?(X), by (4.4)
(¥ Baf(@) = (S, @) =2 [ (0 dutt)

The following example shows that an additional assumption is needed for the
Poisson regularity problem to have an affirmative solution. Let X be the closed
interval [—1, 1] with the usual metric d and let p be the Lebesgue measure on X
with an atom at 0, 4({0}) = 1. Fix any o < 1/4. We will define a piecewise linear
function on X with discontinuities at —2a and 2« as follows. Let a and b be any
real numbers a # b, and define

—b

a +a, —1<z< -2«

8

b—a

flx) = 1 (r—2a)+b, —2a<z<2

«

—b

a +b, 2a<x<1

8
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Using (*) above one readily checks that A, f is continuous by computing left hand
and right hand limits at +2a. (The constant values of f outside [—2«,2a] are
chosen precisely so that the discontinuities of the two terms on the right side of (x)
cancel out.)

With an additional "regularity” hypothesis imposed on p, the Poisson regularity
property holds. In the rest of this section assume that (S, N A) is a continuous
function of x € X for each measurable set A. One can show that if p is Borel
regular, then this will hold provided p(S; N A) is continuous for all closed sets A
(or all open sets A).

Proposition. If A, f = g is continuous for f € L*(X), f is continuous.

Proof. From (%) we have

_ 9@ 1
1) = 505y * sy Jy, T

The first term on the right is clearly continuous by our hypotheses on u and the

fact that g is continuous. It suffices to show that the function h(z) = [ f s,
is continuous. If f = x, is the characteristic function of any measurable set A
then h(z) = p(Sy N A) is continuous, and therefore h is continuous for f any

simple function (linear combination of characteristic functions of measurable sets).

From general measure theory, if f € L?(X), we can find a sequence of simple

functions f, such that f,(t) — f(t) a.e, and |f,(¢)] < |f(t)] for all t € X. Thus
x) = [g fa(t)du(t) is continuous and

|hn<x>—h<x>|s/g|fn<t>— ) du(t) /Ifn — F() du(t)

Since |f, — f| — 0 a.e, and |f,, — f| < 2|f| with f being in L*(X), it follows from
the dominated convergence theorem that | < |fu — fldp — 0. Thus h, converges
uniformly to h and so continuity of A follows from continuity of h,,.

We don’t have a similar result for 1-forms.

Partly to relate our framework of a-harmonic theory to some previous work, we
combine the setting of section 2 with section 4. Thus we now put back the function
K. Assume K > 0 is a symmetric and continuous function K : X x X — R, and §
and 0 are defined as in section 2, but use a similar extension to general o > 0, of
section 4, all in the L? theory.

Let D : L?(X) — L?(X) be the operator defined as multiplication by the con-
tinuous function

- /X G(z,y)duly) where G(z,y) = K(z, y)xus

using the characteristic function xy2 of UZ. So xy2(zo,z1) = 1 if (z0,21) € U2
and 0 otherwise. Furthermore, let L : L?(X) — L?(X) be the integral operator
defined by

Lef(x / G(z,y)f(y) du(y)



Note that Lg(1) = D where 1 is the constant function. When X is compact L¢ is
a Hilbert-Schmidt operator (this was first noted to us by Ding-Xuan Zhou). Thus
L¢ is trace class and self adjoint. It is not difficult to see now that * takes the form

(%) %Aaf:Df—Lc;f

For the special case o = o0, i.e. «a is irrelevant as in section 2, this is the situation
as in Smale-Zhou [189] for the case K is a reproducing kernel. As in the previous
proposition

Proposition. The Poisson Regularity Problem holds for the operator of *x.

To get a better understanding of #x it is useful to define a normalization of the
kernel G and the operator Lg as follows. Let G : X x X — R be defined by

A _ G(x,y)
“9) = B Dy 72

and L : L*(X) — L?(X) be the corresponding integral operator. Then L is trace
class, self adjoint, with non-negative eigenvalues, and has a complete orthonormal
system of continuous eigenfunctions.

A normalized a-Laplacian may be defined on L?(X) by

A=T1-1Lg

N |

so that the spectral theory of L may be transfered to A. (Also, one might consider
1A* =1 — D7 'Lg as in Belkin, De Vito, and Rosasco [1].)

In Smale-Zhou [19], for a = oo, error estimates are given (reproducing kernel
case) for the spectral theory of L, in terms of finite dimensional approximations.

6 Harmonic Forms on Constant Curvature Manifolds

In this section we will give an explicit description of harmonic forms in a special
case. Let X be a compact, connected, oriented manifold of dimension n > 0, with
a Riemannian metric g of constant sectional curvature. Also, assume that g is
normalized so that u(X) = 1 where p is the measure induced by the volume form
associated with g, and let d be the metric on X induced by g. Let a > 0 be
sufficiently small so that for all p € X, the ball B, (p) is geodesically convex. That
is, for x,y € Ba,(p) there is a unique, length minimizing geodesic v from z to y,
and « lies in Bo,(p). Note that if (zg,...,z,) € UZT!, then d(x;,z;) < 2a for all
i,7, and thus all z; lie in a common geodesically convex ball. Such a point defines

an n-simplex with vertices zq, . . . , z,, whose faces are totally geodesic submanifolds,
which we will denote by o (o, ...,x,). We will also denote the k dimensional faces
by o(Zig,...,2i,) for k < n. Thus o(z;, ;) is the geodesic segment from x; to

xj, o(x;,z;,2) is the union of geodesic segments from z; to points on o(x;,zx)
and higher dimensional simplices are defined inductively. (Since X has constant
curvature, this construction is symmetric in xg,...,Z,.) A k dimensional face will
be called degenerate if one of it’s vertices is contained in one of it’s k—1 dimensional
faces.

18



For (zg,...,2,) € UZDT! the orientation on X induces an orientation on
o(xg,...,x,) (assuming it is non-degenerate). For example, if vq,...,v, denoted
the tangent vectors at =y to the geodesics from zy to z1,...,x,, we can define
o(xo,...,x,) to be positive (negative) if {vy,...,v,} is a positive (respectively neg-
ative) basis for the tangent space at xg. Of course, if 7 is a permutation, the orienta-
tion of o (g, . ..,n) is equal to (—1)*8"7 times the orientation of o(Zr(0), -+ Tr(n))-
We now define f : UM — R by

f(zo,...,xn) = ulo(xo,...,2,)) for o(xg,...,x,) positive
= —u(o(zg,...,xy,)) for o(xg,...,x,) negative
=0 for o(xq,...,x,) degenerate

Thus f is the signed volume of oriented geodesic n-simplices. Clearly f is contin-
uous as non-degeneracy is an open condition and the volume of a simplex varies
continuously in the vertices. The main result of this section is

Theorem. f is harmonic. In fact f is the unique harmonic n-form in L2(UH1)
up to scaling.

Proof. We will show that f = 0 and §f = 0. Let (xg,...,z,—1) € UZ. To show
0f =0, it suffices to show, by Proposition 10, that

(6.1) /s flt, o, xn_1)dp(t) =0

TO " Tp—1

We may assume that o(zg,...,Z,—1) is non-degenerate, otherwise the integrand
is identically zero. Recall that Sy,...,, , = {t € X : (t,2¢,...,7n_1) C U1} C
Bo () where Ba,(z0) is the geodesic ball of radius 2« centered at . Let T' be
the intersection of the totally geodesic n — 1 dimensional submanifold containing
T, - .-, Tp_1 With Bay(xg). Thus T’ divides Ba,(zo) into two pieces BT and B~.
For t € T, the simplex o (¢, zo, ..., Z,—1) is degenerate and therefore the orientation
is constant on each of B+ and B~, and we can assume that the orientation of
o(t,xg,...,xn_1) is positive on B+ and negative on B~. For & € Ba,(xg) define
@(x) to be the reflection of = across I'. Thus the geodesic segment from z to ¢(x)
intersects I' perpendicularly at it’s midpoint. Because X has constant curvature,
¢ is a local isometry and since xzg € T, d(z,x9) = d(p(x),x0). Therefore ¢ :
Bao(20) — Ba2a(xo) is an isometry which maps B isometrically onto B~ and B~
onto B*. Denote Sy,....,_, by S. It is easy to see that ¢ : S — S, and so defining
S* = 5N B* it follows that ¢ : ST — S~ and ¢ : S~ — ST are isometries. Now

/ flt, o, .o xpn_1)du(t)
Suria

Lo Tp—1

/ ft, o, oy xp_1)du(t) / ft, o, oy xp_1)du(t)
:/ u(a(t,zo,...,xn_l))du(t)7/ wlo(t,zg, ..., Tn—1)) du(t)
s+ -

Since u(o(t,xg,...,2n_1)) = u(o(p(t)t,zo,...,x,_1)) for t € ST, the last two
terms on the right side cancel establishing (6.1).
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We now show that 6 f = 0. Let (¢, zq,...,7,) € U2, Thus

SF (6,20, s an) = f(0,eeesan) + S (1) (a0, o sy )

1=0

and we must show that

n
(6.2) f@o, .. zn) = (1) f(t,z0,.. ., &iy ... T)
i=0
Without loss of generality, we will assume that o(zo,...,z,) is positive. The
demonstration of (6.2) depends on the location of . Suppose that ¢ is in the interior
of the simplex o(zg,...,on). Then for each 4, the orientation of
o(xg, ..., Xi—1,t,Tit1,-..,T,) is the same as the orientation of o(zy,...,x,) since
t and z; lie on the same side of the face o(zg....,&;,...,2,), and is thus posi-
tive. On the other hand, the orientation of o(t,zq,...%,...,2,) is (—1)¢ times
the orientation of o(xg,...,2;—1,t, Tij+1,...,2Z,). Therefore the right side of (6.2)
becomes
n
Zu(a(mo, e T, 6 i1, T)
i=0

This however equals p(o(zo, ..., x,)) which is the left side of (6.2), since

o m
O'(il'(), e fﬂn) - U'L:Oa-(x()v sy Ti—1, L, Titly---, xn)
when ¢ is interior to o(zo,...,zy).
There are several cases when ¢ is exterior to o(zo,...,z,) (or on one of the

faces), depending on which side of the various faces it lies. We just give the details
of one of these, the others being similar. Simplifying notation, let F; denote the

face ”opposite” x;, o(xg, ..., 24, ..., %,), and suppose that ¢ is on the opposite side
of Fy from xq, but on the same side of F; as x; for i # 0. As in the above argument,
the orientation of o(xq,...,2;—1,t, Tit1,-..,Ty) is positive for ¢ # 0 and is negative

for 4 = 0. Therefore the right side of (6.2) is equal to

n

(6.3) Zu(a(zo, e T, 6 Ty, X)) — p(o (X, )

i=1
Let s be the point where the geodesic from xg to ¢ intersects Fy. Then for each
>0

O'(.’I}07 s T, € Tit1y--- ,.’En) = O'(l‘(), sy Ti—1,8, Lit 1, - - - axn)

UJ(S,...,$i,1,t,$i+1,...,$n)

Taking p of both sides and summing over ¢ gives

n

n
ZM(O’(IEC], . ,xi_l,t,xi+1, e 7I'n)) = Z‘LL(CT(IL’(), ey L5158, Lj41y - - - ,l’n))
i=1 i=1

n

+ ZM(U(S’ s axi—htaxi-‘rla s 7xn))
=1
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However, the first term on the right is just p(o(zo, ..., z,)) and the second term is
w(o(t,x1,...,2,). Combining this with (6.3) gives us (6.2), finishing the proof of
of =0.

The uniqueness of f as a harmonic n-form (up to scaling) follows from Proposi-
tion A in section 7, and the fact that the Alexander Spanier n dimensional coho-
mology of a compact oriented n manifold is one dimensional.

Remark. The proof that 0f = 0 strongly used the fact that X has constant
curvature. In the case where X has variable curvature, totally geodesic n simplices
don’t generally exist, although geodesic triangles o(zg, 21, x2) are well defined for
(w0, 1, 22) € US. In this case, the proof above shows that Jf = 0.

7 Cohomology

Traditional cohomology theories on general spaces are typically defined in terms
of limits as in Cech theory, with nerves of coverings. However, an algorithmic
approach suggests a development via a scaled theory, at a given scale a > 0. Then,
as a« — 0 one recovers the classical setting. A closely related point of view is
that of persistent homology, see Edelsbrunner, Letscher, and Zomorodian [9], and
Zomorodian and Carlsson [25].

We give a setting for such a scaled theory, with a fixed scaling parameter @ > 0.

Let X be a separable, complete metric space with metric d, and « > 0 a "scale”.
We will define an associated (generally infinite) simplicial complex Cx o to (X, d, o).
Toward that end let X**1, for £ > 0, be the £+1-fold Cartesian product, with metric

.....

in section 4, let
UAH(X) = U = {z € X 2 d(2, Dt < a)

where Dy 1 € X! is the diagonal, so Dyyq = {(t,...,t) £+ 1 times}. Then

let Cxqo = U;";ougﬂ.This has the structure of a simplicial complex whose (-
simplices consist of points of UST!. This is well defined since if + € U, then
y = (z0,...,24,...,2¢) € UL, for each i = 0,...,¢. We will write o = oo to mean

that UY = X*. Following e.g. Munkres [17], there is defined a cohomology theory,
simplicial cohomology, for this simplicial complex, with with cohomology vector
spaces (always over R), denoted by H%(X). We especially note that Cx , is not
necessarily a finite simplicial complex. For example, if X is an open non-empty
subset of Euclidean space, the vertices of C'x , are the points of X and of course
infinite in number. The complex C'x o, will be called the scaled simplicial complex,
at scale o associated to X.

Note that if 0 < 8 < o one has a natural inclusion J : Uf; — Ut J:COxp —
Cx o and the restriction J* : L2(Uf) — L2(Uf) commuting with § (a chain map).

Example. X is finite. Fix a > 0. In this case, for each ¢, the set of ¢-simplices
is finite, the ¢-chains form a finite dimensional vector space and the cohomology
groups (i.e. vector spaces) HY(X) are all finite dimensional. One can check that for
a = o0, one has dimH?(X) = 1 and H{ (X) are trivial for all i > 0. Moreover, for
a sufficiently small (o < min{d(z,y) : z,y € X, © # y}) dimH2(X) =cardinality
of X, with H!(X) = 0 for all i > 0. For intermediate «, the a-cohomology can be
rich in higher dimensions, but Cx , is a finite simplicial complex.
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Example. First let A C R? be the annulus A = {z € R?: 1 < ||z|| < 2}. Form A*
by deleting the finite set of points with rational coordinates p/q, with |g¢| < 101°.
Then one may check that for o > 4, H%(A*) has the cohomology of a point, for
certain intermediate values of o, HY,(A*) = H’(A), and for a small enough H’ (A*)
has enormous dimension. Thus the scale is crucial to see the features of A* clearly.

Returning to the case of general X, fixed scale «, consider the covering { B, (z) :
x € X}, where B, (z) is the ball By(z) = {y € X : d(z,y) < a}, and the nerve of
the covering is C'x o, giving the Cech construction at scale a. Thus from the Cech
cohomology theory, we may say that the limit as o — 0 of H:(X) = HY(X) =
HE., ., (X) is the £-th Cech cohomology group of X.

The next observation is to note that our construction of the scaled simplicial
complex Cx , of X follows the same path as Alexander-Spanier theory (see Spanier
[21]). Thus the scaled cohomology groups HY(X) will have the direct limit as
a — 0, the Alexander-Spanier group Hf‘lex_sp(X). Thus H*(X) = Hf”ex_sp(X) =
H¢,.,(X). In fact in much of the literature this is recognized by the use of the
term Alexander-Spanier-Cech cohomology.

Now that we have defined the scaled cohomology groups, scale a, H:(X) for a
metric space X, our Hodge theory suggests two modifications. First, from Theorem
3, we have considered instead of arbitrary cochains (i.e. arbitrary functions on U4*?
which give our definition here of HY (X)), cochains defined by L? functions on U.*!.
Thus we have constructed cohomology groups at scale o from L? functions on U5+,
H! ,(X), when a > 0, and X is a metric space equipped with Borel probability

a,L?
measure.

Cohomology Identification Problem (CIP). To what extent is it true that
the natural map H£2,a (X) — HY(X) is an isomorphism?

This is important via Theorem 3 which asserts that H 227 o(X) — Harmf (X) is
an isomorphism.

One may replace L? functions in the construction of the a-scale cohomology
theory by continuous functions. As in the L? theory, this gives rise to cohomology
groups H f(mt’a(X ). Analagous to CIP we have the simple question: To what extent
is the natural map H/,,, ,(X) — H.(X) is an isomorphism? We know of no case
where it isn’t. Literature seems to suggest that the answer to the ”simple question”
is always affirmative. See e.g. Watts [23], where in the limit o — 0 it is shown that
Hfont (X) = Hﬁ!lem—Sp(X)'

Note that in the case X is finite, or @ = oo, we have an affirmative answer to
this question, as well as CIP (see sections 2 and 3).
We show that existence of continuous or L? harmonic functions on USF!(X)

imply non-trivial ¢ dimensional homology. Let Harm/,,, ,(X) and HarméLgya(X )
denote the continuous and L? harmonic functions on USH! respectively.
Proposition A. There is a natural injective linear map Harmﬁom’a (X) —
Hop1,0(X).

Proposition B. There is a natural injective linear map HarmeLz’a(X) — Hﬁ?,a (X).

Proof. We give the proof of Proposition A, the one of B being similar. The inclusion,
which is injective

J : IMeont,ad @ Harm® (X) — Kercont,a

cont,a
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induces an injection

Imcon Aaé@Harmgon a X K cont,a
J* : Harmé X) = b L ( ) - < Z = Hfont,a

cont,a(

(X)

Imcont,a(s Imcont,a

and the proposition follows.

8 Continuous Hodge Theory on the Neighborhood of the Diagonal

As in the last section, (X, d) will denote a compact metric space equipped with
a Borel probability measure p. For topological reasons (see section 6) it would be
nice to have a Hodge decomposition for continuous functions on U.!, analogous
to the continuous theory on the whole space (section 4). We will use the following
notation. C4+! will denote the continuous alternating real valued functions on USH!,
Kercont,o A¢ will denote the functions in Cﬁ“ that are harmonic, and Kercont,qo6p
will denote those elements of C{™! that are closed. Also, Hf,,, ,(X) will denote
the quotient space (cohomology space) Kereont.ade/6(C%) We raise the following
question, analogous to Thereom 3.

Question (Continuous Hodge Decomposition). Is it true for a > 0, that
there is the following orthogonal (with respect to the L? inner product) direct sum
decomposition

CLM = 6(CL) ® 0(CLT?) @ Kereont,alAe

Furthermore, is Kercont o¢ s isomorphic to H!

cont,x
4
Hco’m;a

(X), with every element in
(X) having a unique representative in Kercont,oNe?

An affirmative answer solves the cohomology identification problem.

There is a related analytical problem that is analogous to elliptic regularity for
partial differential equations, and in fact elliptic regularity features prominently in
classical Hodge theory.

The Poisson Regularity Problem. For a >0, and £ > 0, suppose that Af =g
where g € CS*Y and f € L2(USY).  Under what conditions on (X,d,p) is f
continuous?

We have some expectation that under some reasonable assumptions on the mea-
sure or perhaps metric, that the answer is affirmative.

Theorem. An affirmative answer to the Poisson Regularity problem implies an
affirmative solution to the continuous Hodge decomposition question.

Proof. Assume that the Poisson regularity property holds, and let f € C4*!. From
theorem 3 we have the L? Hodge decomposition

f=0fi+0fa+ f3

where f1 € L2(UY), fo € L2(ULT?) and f3 € L2(ULTY) with Af; = 0. It suffices
to show that f; and f> can be taken to be continuous, and f3 is continuous. Since
Afs = 0 is continuous, f3 is continuous by Poisson regularity. We will show that
Ofa = 0(0hg) where dhg is continuous (and thus f; can be taken to be continuous).
Recall (corollary of the Hodge Lemma in section 2) that the following maps are
isomorphisms

0:9(La(ULM?)) — 8(La(UST) and 0 : 6(L3(Uy)) — O(La(Us™))
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For all ¢ > 0. Thus
df2 = 0(3hy) for some hy € L2(ULT)
Now,

(%) A(6(h2)) = 6(9(6(h2))) + 0(6(5(h2))) = 6(8(6(h2))) = 6(8(f2))

since 62 = 0. However, from the decomposition for f we have, since § f3 = 0

6f =06(0f2)

and since f is continuous §f is continuous, and therefore §(9f3) is continuous. Tt
then follows from Poisson regularity and * that dhs is continuous as to be shown.
A dual argument shows that § f; = §(9h1) where Oh; is continuous, completing the
proof.

Notice that a somewhat weaker result than Poisson regularity would imply that
f3 above is continuous, namely regularity of harmonic functions.

Harmonic Regularity Problem. For o > 0, and £ > 0, suppose that Af =0
where f € L2(UY). What conditions on (X,d, p) would imply f is continuous?

Under some additional conditions on the measure, we have answered this for
¢ = 0 (see section 5) and can do so for £ = 1, which we now consider. We will
first derive an expression for a harmonic 1-form f in terms measures of slices and
integrals of f over subsets of X2. Let f € L2(U2) be harmonic. Then from
Proposition 10, section 4, since df = 0 we have for z € X

(.1) [ steayau <o

Since df = 0, we have

(8.2) f(wo,21) = f(z0,8) — f(x1,5)

for all (zo,z1,s) € U2 or equivalently, (zg,71) € U2 and s € S;,.,. Integrating
(8.2) over s € Syyu, gives

(.3) f(wo,x1)=1</s oo 5) dus) - |

H(Szoe:) f(z1,s) du(s))

QT Smoml

We now use (8.2) to extend f to a somewhat larger set. Rewriting (8.2), note that

f(xo,8) = f(xo,21) — f(s,21)

for s € Syyu, and (z0,71) € UZ2. However, the right side is actually defined whenever

s € Sg,. Therefore, the above equation defines a unique extension of f to {(zo, s) :

s € Sy, whenever (zg,z1) € U2} such that §f = 0. Clearly this extension is in L2,
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since the right side of the above equation is in L?. Now, we integrate (8.2) over
t € S,,, with s in place of x; and ¢ in place of s to get

A

p(S2)faos) = [ Flt,5)dutt)
z0o
similar computation gives

§(Se) (a1, 8) = /S f(u, 5) dp(u)

and substituting these into (8.3) yields

(8

1 1
4) flxo,z) = 1(Seozy) \ 11(Say) /s

EREST

Tl

[ s0) dutwyns)

[ #ts) dutwints)
Say

Note that the variables zy and x; occur only within the measure, and domains of
integration on the right. These terms will be continuous under regularity assump-
tions on p analogous to the Poisson regularity proposition for 0-forms in section

5.

Proposition. Assume that u(Sy), (1(Sey) and p?((Sey x Si) N A) are continuous
for z,y € X and all A measurable. If f is an a-harmonic 1-form in L2(U2), then

f

A

10.

11.

s continuous.

As in section 5, if p is Borel regular, it suffices that the hypotheses hold for all
closed (or all A open).
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